Online Matrix Completion Through Nuclear Norm Regularisation

نویسندگان

  • Charanpal Dhanjal
  • Romaric Gaudel
  • Stéphan Clémençon
چکیده

It is the main goal of this paper to propose a novel method to perform matrix completion on-line. Motivated by a wide variety of applications, ranging from the design of recommender systems to sensor network localization through seismic data reconstruction, we consider the matrix completion problem when entries of the matrix of interest are observed gradually. Precisely, we place ourselves in the situation where the predictive rule should be refined incrementally, rather than recomputed from scratch each time the sample of observed entries increases. The extension of existing matrix completion methods to the sequential prediction context is indeed a major issue in the Big Data era, and yet little addressed in the literature. The algorithm promoted in this article builds upon the Soft Impute approach introduced in [17]. The major novelty essentially arises from the use of a randomised technique for both computing and updating the Singular Value Decomposition (SVD) involved in the algorithm. Though of disarming simplicity, the method proposed turns out to be very efficient, while requiring reduced computations. Several numerical experiments based on real datasets illustrating its performance are displayed, together with preliminary results giving it a theoretical basis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Rank Tensor Completion by Truncated Nuclear Norm Regularization

Currently, low-rank tensor completion has gained cumulative attention in recovering incomplete visual data whose partial elements are missing. By taking a color image or video as a three-dimensional (3D) tensor, previous studies have suggested several definitions of tensor nuclear norm. However, they have limitations and may not properly approximate the real rank of a tensor. Besides, they do n...

متن کامل

Low-Rank Matrix Completion

While datasets are frequently represented as matrices, real-word data is imperfect and entries are often missing. In many cases, the data are very sparse and the matrix must be filled in before any subsequent work can be done. This optimization problem, known as matrix completion, can be made well-defined by assuming the matrix to be low rank. The resulting rank-minimization problem is NP-hard,...

متن کامل

Truncated Nuclear Norm Minimization for Image Restoration Based On Iterative Support Detection

Recovering a large matrix from limited measurements is a challenging task arising in many real applications, such as image inpainting, compressive sensing and medical imaging, and this kind of problems are mostly formulated as low-rank matrix approximation problems. Due to the rank operator being non-convex and discontinuous, most of the recent theoretical studies use the nuclear norm as a conv...

متن کامل

An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems

The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...

متن کامل

An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems

The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014